Conduct a sequence of independent Bernoulli trials , with probability p of success on each trial until we obtain a pre-defined number r of successes. What is the probability of exactly x failures before getting the r successes? Such a random variable is said to have a negative binomial distribution:
P ( X = x ) ...= ...pr
(–1)x ( 1 – p )x , ......x ≥ 0 –r x
where
......:= ...... –r x –r ( –r – 1 ) ⋯ ( –r – x + 1 ) x!
...........................= ...(–1)x r ( r + 1 ) ⋯ ( r + x – 1 ) x!
...........................= ...(–1)x r + x – 1 x
So we can write the alternative form
P ( X = x ) ...= ...( r +xx – 1 ) pr ( 1 – p ) x , ......x ≥ 0
Note Taylor series expansion: ...( 1 – t )–r ...= ...∑0∞ ( -xr ) ( –t ) x .
So ...∑ pr ( -xr ) ( –1 ) x ( 1 – p ) x ...= ...pr ∑ ( -xr ) ( – ( 1 – p ) ) x ...= ...pr p–r ...= ...1
Consider the total number of trials to get r successes, let this be the random variable Y, then Y = X + r, and
P ( Y = y ) ...= ...P ( X = y – r )
...........................= ...( yy--1r ) pr ( 1 – p ) y – r
...........................= ...( yr--11 ) pr ( 1 – p ) y – r , ......y ≥ r
Which is also sometimes called the negative binomial
The p.g.f. of the Negative Binomial Distribution is given by
Φ( t ) ...= ...∞ ∑ pr
(–1) x ( 1 – p ) x t x –r x x = 0
........................= ...pr ∞ ∑
( –t ( 1 – p ) ) x –r x x = 0
........................= ... p ( 1 – t ( 1 – p )) r
Φ'( t ) ...= ...r pr ( 1 – p ) ( 1 – t ( 1 – p ) ) r + 1
Φ''( t ) ...= ...( r + 1 ) r pr ( 1 – p )2 ( 1 – t ( 1 – p ) ) r + 2
Φ'( 1 ) ...= ...r ( 1 – p ) ...p ...
Φ''( 1 ) ...= ...( r + 1 ) r ( 1 – p )2 ...p 2 ...
E( X ) ...= ...r ( 1 – p ) ...p ...
var( X ) ...= ...( r + 1 ) r ( 1 – p )2 ...+ ...r p ( 1 – p ) ...– ...r 2 ( 1 – p ) 2 ...p 2 ...
...........................= ...r ( 1 – p ) ...p 2 ...
E( X ) ...= ...r ( 1 – p ) ⁄ p var( X ) ...= ...r ( 1 – p ) ⁄ p 2 |