Negative Binomial Distribution

1 Negative Binomial Distribution

Conduct a sequence of independent Bernoulli trials , with probability p of success on each trial until we obtain a pre-defined number r of successes. What is the probability of exactly x failures before getting the r successes? Such a random variable is said to have a negative binomial distribution:

P ( X = x ) ...= ...pr

r
x
(–1)x ( 1 p )x , ......x ≥ 0

where

r
x
......:= ......
r ( r 1 ) ⋯ ( r x + 1 )

x!

...........................= ...(–1)x

r ( r + 1 ) ⋯ ( r + x 1 )

x!

...........................= ...(–1)x

r + x 1
x

So we can write the alternative form

P ( X = x ) ...= ...( r +xx 1 ) pr ( 1 p ) x , ......x ≥ 0

Note Taylor series expansion: ...( 1 t )r ...= ...0 ( -xr ) ( t ) x .
So ...pr ( -xr ) ( 1 ) x ( 1 p ) x ...= ...pr ∑ ( -xr ) ( ( 1 p ) ) x ...= ...pr pr ...= ...1

2 Alternative Definition

Consider the total number of trials to get r successes, let this be the random variable Y, then Y = X + r, and

P ( Y = y ) ...= ...P ( X = y r )

...........................= ...( yy--1r ) pr ( 1 p ) y r

...........................= ...( yr--11 ) pr ( 1 p ) y r , ......yr

Which is also sometimes called the negative binomial

3 Moments

The p.g.f. of the Negative Binomial Distribution is given by

Φ( t ) ...= ...

pr
r
x
(–1) x ( 1 p ) x t x
x = 0

........................= ...pr

r
x
( t ( 1 p ) ) x
x = 0

........................= ...

p

( 1 t ( 1 p ))
r

Φ'( t ) ...= ...

r pr ( 1 p )

( 1 t ( 1 p ) ) r + 1

Φ''( t ) ...= ...

( r + 1 ) r pr ( 1 p )2

( 1 t ( 1 p ) ) r + 2

Φ'( 1 ) ...= ...

r ( 1 p )

...p ...

Φ''( 1 ) ...= ...

( r + 1 ) r ( 1 p )2

...p 2 ...

E( X ) ...= ...

r ( 1 p )

...p ...

var( X ) ...= ...

( r + 1 ) r ( 1 p )2 ...+ ...r p ( 1 p ) ... ...r 2 ( 1 p ) 2

...p 2 ...

...........................= ...

r ( 1 p )

...p 2 ...

E( X ) ...= ...r ( 1 p ) ⁄ p
var( X ) ...= ...r ( 1 p ) ⁄ p 2