Suppose we have k groups of observations ( of the same variable ) , where the n i observations in each group [∑i = 1...k ni = n] are assumed to have the same distribution, i.e. all the observation in a group have the same mean, and the variance is the same for all the observations:
H1: y ∼ N ( μ, σ2I ) , ...μ = ( μ1,1, ⋯ , μ1,n1, .... . . ...μk,1, ⋯ , μk,nk ) ...and ...μi,j = θi. ...So μ ∊ L1, dim ( L1 ) = k, and L1 is spanned by v1, ⋯ , vk where:
v1 = ( 1, ⋯ ,1,0, ⋯ ,0, .... . . ...0, ⋯ , 0 )
....
....
vi = ( 0, ⋯ ,0, .... . . ...1, ⋯ ,1, .... . . ...0, ⋯ , 0 ) ............[ith group]
....
....
vk = ( 0, ⋯ ,0, .... . . ...0, ⋯ ,0,1, ⋯ ,1 )
Now ( y – p1 ( y ) ) · vi = 0, ...i = 1, ⋯ k ..., ...i.e.
y · vi ...= ...p1 ( y ) · vi, ............∀ i
but
p1 ( y ) · vi ...= ...ni ∧
θi
.
y · vi ...= ...ni ∑ xi,j j = 1
so
...= ...∧
θi
.1 ni
...= ...yi ...............the group mean ni ∑ xi,j j = 1
p1 ( y ) ...= ...( y1, ⋯ y1, ....... . . ......yi, ⋯ yi, ....... . . ......yk, ⋯ yk )
RSS ...= ...|| y – p1 ( y ) || 2 ...= ...∑ i ∑ ( yi, j – yi ) 2 j
s12 ...= ...RSS n – k
Consider the hypothesis H2: θ1 = θ2 = ⋯ = θk = θ
This is the same as the hypothesis in " Uniform Normal Distribution ", so the RSS [with n – 1 degrees of freedom] in that model now becomes the TSS in this one:
TSS ...= ...|| y – p2 ( y ) || 2 ...= ...
...............where y ...= ...∑ ( yi, j – y ) 2 i, j 1 n ∑ yi, j i , j
s22 ...= ...1 n – 1 n ∑ ( xi – y ) 2 1
Also
ESS ...= ...|| p1 ( y ) – p2 ( y ) || 2 ...= ...k ∑ ni ( yi – y ) 2 i = 1
Anova Table:
Sum of Squares | df | MS | r | ||||||||||||||||||||||||||||
ESS = |
|
k – 1 |
|
|
|||||||||||||||||||||||||||
RSS = |
|
n – k |
|
||||||||||||||||||||||||||||
TSS = |
|
n – 1 |
|
Now
r ...= ...
......∼ ......F ( k – 1, n – k ) ESS / k – 1 RSS / n – k