One-way Analysis of Variance

1 Grouped observations

Suppose we have k groups of observations ( of the same variable ) , where the n i observations in each group [∑i = 1...k ni = n] are assumed to have the same distribution, i.e. all the observation in a group have the same mean, and the variance is the same for all the observations:

H1: y ∼ N ( μ, σ2I ) , ...μ = ( μ1,1, ⋯ , μ1,n1, .... . . ...μk,1, ⋯ , μk,nk ) ...and ...μi,j = θi. ...So μ ∊ L1, dim ( L1 ) = k, and L1 is spanned by v1, ⋯ , vk where:

v1 = ( 1, ⋯ ,1,0, ⋯ ,0, .... . . ...0, ⋯ , 0 )

....

....

vi = ( 0, ⋯ ,0, .... . . ...1, ⋯ ,1, .... . . ...0, ⋯ , 0 ) ............[ith group]

....

....

vk = ( 0, ⋯ ,0, .... . . ...0, ⋯ ,0,1, ⋯ ,1 )

Now ( y p1 ( y ) ) · vi = 0, ...i = 1, ⋯ k ..., ...i.e.

y · vi ...= ...p1 ( y ) · vi, ............i

but

p1 ( y ) · vi ...= ...ni


θi
.

y · vi ...= ...

ni
xi,j
j = 1

so


θi
.
...= ...
1

ni
ni
xi,j
j = 1
...= ...yi ...............the group mean

p1 ( y ) ...= ...( y1, ⋯ y1, ....... . . ......yi, ⋯ yi, ....... . . ......yk, ⋯ yk )

RSS ...= ...|| y p1 ( y ) || 2 ...= ...

i
( yi, j yi ) 2
j

s12 ...= ...

RSS

n k

2 Testing for uniform mean

Consider the hypothesis H2: θ1 = θ2 = ⋯ = θk = θ
This is the same as the hypothesis in " Uniform Normal Distribution ", so the RSS [with n 1 degrees of freedom] in that model now becomes the TSS in this one:

TSS ...= ...|| y p2 ( y ) || 2 ...= ...

( yi, j y ) 2
i, j
...............where y ...= ...
1

n
yi, j
i , j

s22 ...= ...

1

n 1
n
( xi y ) 2
1

Also

ESS ...= ...|| p1 ( y ) p2 ( y ) || 2 ...= ...

k
ni ( yi y ) 2
i = 1

Anova Table:

Sum of Squares df MS r
ESS =
ni ( yi y ) 2
i
k – 1
ESS

k – 1
ESS / k – 1

RSS / n k
RSS =
i
( yi, j yi ) 2
j
n k
RSS

n k
= s12
TSS =
( yi, j y ) 2
i, j
n 1
TSS

n 1
= s22
 

Now

r ...= ...

ESS / k – 1

RSS / n k
............F ( k 1, n k )